skip to main content


Search for: All records

Creators/Authors contains: "Fischer, K. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Colorado Plateau and its surroundings serve as an archetypal case to investigate the interaction of mantle melting processes and lithospheric structure. It has been hypothesized that widespread Cenozoic volcanism indicates the encroachment of the convective upwelling of asthenosphere toward the Plateau center. In this study, we generate a Common Conversion Point (CCP) stack of S‐to‐p (Sp) receiver functions to image the locations of lithospheric discontinuities in the southwestern United States. Our results are broadly similar to prior work, showing a strong and continuous Negative Velocity Gradient (NVG) consistent with the Lithosphere‐Asthenosphere Boundary (LAB) over much of the study area. However, with several methodological improvements, we are able to obtain more reliable NVG depth picks below the Colorado Plateau where the LAB becomes weaker, deeper, and broader. We compare the inferred topography of NVGs with the locations of volcanoes, and find that the majority of recent volcanoes are co‐located with lithosphere that is ∼80 km thick. This appears to be the critical depth at which partial melt from upwelling asthenosphere pooling at the base of (or within) the lithosphere may percolate to the surface. We compare our CCP profiles with magma equilibration conditions determined from petrologic analysis and find good agreement between the depth of NVGs and depth of magma equilibration. This analysis provides insight into the progression of magmatism and lithospheric loss toward the center of the Colorado Plateau, and demonstrates how small‐scale processes like melting influence lithosphere‐asthenosphere interactions that persist over large temporal and spatial scales.

     
    more » « less
  2. Abstract

    The origin of widespread volcanism far from plate boundaries and mantle plumes remains a fundamental unsolved question. An example of this puzzle is the Anatolian region, where abundant intraplate volcanism has occurred since 10 Ma, but a nearby underlying plume structure in the deep mantle is lacking. We employed a combination of seismic and geochemical data to link intraplate volcanism in Anatolia to a trail of magmatic centers leading back to East Africa and its mantle plume, consistent with northward asthenospheric transport over a ∼2,500 km distance. Joint modeling of seismic imaging and petrological data indicates that the east Anatolian mantle potential temperature is higher than the ambient mantle (∼1,420°C). Based on multiple seismic tomography models, the Anatolian upper mantle is likely connected to East Africa by an asthenospheric channel with low seismic velocities. Along the channel, isotopic signatures among volcanoes are consistent with a common mantle source, and petrological data demonstrate similar elevated mantle temperatures, consistent with little cooling in the channel during the long‐distance transport. Horizontal asthenospheric pressure gradients originating from mantle plume upwelling beneath East Africa provide a mechanism for high lateral transport rates that match the relatively constant mantle potential temperatures along the channel. Rapid long‐distance asthenospheric flow helps explain the widespread occurrence of global intraplate magmatism in regions far from deeply‐rooted mantle plumes throughout Earth history.

     
    more » « less
  3. Abstract

    Strain partitioning in oblique convergent margins results in margin‐parallel shear in the overriding plate. Margin‐parallel shear is often accommodated by margin‐parallel strike‐slip faults proximal to active volcanic arcs. Along the Nicaraguan segment of the Central American Forearc (CAFA) in the Cocos‐Caribbean plate convergent margin, there are no well‐expressed right‐lateral faults that accommodate CA‐CAFA relative motion. Instead, historical earthquakes and mapped fault orientations indicate that the ∼12 mm/yr of dextral motion is accommodated on arc‐normal, left‐lateral faults (i.e., bookshelf faults). We investigate three upper‐plate earthquakes; the 10 April 2014 (Mw6.1), 15 September 2016 (Mw5.7), and 28 September 2016 (Mw5.5), using Global Position System co‐seismic displacements and relocated earthquake aftershocks. Our analyses of the three earthquakes indicate that the 10 April 2014 earthquake ruptured an unmapped margin‐parallel right‐lateral fault in Lago Xolotlán (Managua) and the September 2016 earthquakes ruptured arc‐normal, left‐lateral and oblique‐slip faults. These earthquakes represent a triggered sequence whereby the 10 April 2014 earthquake promoted failure of the faults that ruptured in September 2016 by imparting a static Coulomb stress change (ΔCFS) of 0.02–0.07 MPa. Likewise, the 15 September 2016, earthquake additionally promoted failure (ΔCFS of 0.08–0.1 MPa) on sub‐parallel faults that ruptured in two subsequent earthquakes. We also present an instance of magma‐tectonic interaction whereby the 10 April 2014 earthquake dilated (10s of μStrain) the shallow magmatic system of Momotombo Volcano, which led to magma injection, ascent, and eruption on 1 December 2015, after ∼100 years of quiescence.

     
    more » « less
  4. Abstract

    This study presents an improved approach to common‐conversion point stacking of converted body waves that incorporates scattering kernels, accurate and efficient measurement of stack uncertainties, and an alternative method for estimating free surface seismic velocities. To better separate waveforms into thePandSVcomponents to calculate receiver functions, we developed an alternative method to measure near‐surface compressional and shear wave velocities from particle motions. To more accurately reflect converted phase scattering kernels in the common‐conversion point stack, we defined new weighting functions to project receiver function amplitudes only to locations where sensitivities to horizontal discontinuities are high. To better quantify stack uncertainties, we derived an expression for the standard deviation of the stack amplitude that is more efficient than bootstrapping and can be used for any problem requiring the standard deviation of a weighted average. We tested these improved methods onSpphase data from the Anatolian region, using multiple band‐pass filters to image velocity gradients of varying depth extents. Common conversion point stacks of 23,787Spreceiver functions demonstrate that the new weighting functions produce clearer and more continuous mantle phases, compared to previous approaches. The stacks reveal a positive velocity gradient at 80–150 km depth that is consistent with the base of an asthenospheric low‐velocity layer. This feature is particularly strong in stacks of longer period data, indicating it represents a gradual velocity gradient. At shorter periods, a lithosphere‐asthenosphere boundary phase is observed at 60–90 km depth, marking the top of the low‐velocity layer.

     
    more » « less
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available August 1, 2024
  7. Free, publicly-accessible full text available August 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024
  9. A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  10. A bstract A search for the lepton-flavour violating decays B 0 → K *0 μ ± e ∓ and $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ is presented, using proton-proton collision data collected by the LHCb detector at the LHC, corresponding to an integrated luminosity of 9 fb − 1 . No significant signals are observed and upper limits of $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{+}{e}^{-}\right)<5.7\times {10}^{-9}\left(6.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{-}{e}^{+}\right)<6.8\times {10}^{-9}\left(7.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{\pm }{e}^{\mp}\right)<10.1\times {10}^{-9}\left(11.7\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}_s^0\to \phi {\mu}^{\pm }{e}^{\mp}\right)<16.0\times {10}^{-9}\left(19.8\times {10}^{-9}\right)\end{array}} $$ B B 0 → K ∗ 0 μ + e − < 5.7 × 10 − 9 6.9 × 10 − 9 , B B 0 → K ∗ 0 μ − e + < 6.8 × 10 − 9 7.9 × 10 − 9 , B B 0 → K ∗ 0 μ ± e ∓ < 10.1 × 10 − 9 11.7 × 10 − 9 , B B s 0 → ϕ μ ± e ∓ < 16.0 × 10 − 9 19.8 × 10 − 9 are set at 90% (95%) confidence level. These results constitute the world’s most stringent limits to date, with the limit on the decay $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ the first being set. In addition, limits are reported for scalar and left-handed lepton-flavour violating New Physics scenarios. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024